Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Music and learning-induced cortical plasticity.

Identifieur interne : 001B22 ( Main/Exploration ); précédent : 001B21; suivant : 001B23

Music and learning-induced cortical plasticity.

Auteurs : Christo Pantev [Canada] ; Bernhard Ross ; Takkao Fujioka ; Laurel J. Trainor ; Michael Schulte ; Matthias Schulz

Source :

RBID : pubmed:14681168

Descripteurs français

English descriptors

Abstract

Auditory stimuli are encoded by frequency-tuned neurons in the auditory cortex. There are a number of tonotopic maps, indicating that there are multiple representations, as in a mosaic. However, the cortical organization is not fixed due to the brain's capacity to adapt to current requirements of the environment. Several experiments on cerebral cortical organization in musicians demonstrate an astonishing plasticity. We used the MEG technique in a number of studies to investigate the changes that occur in the human auditory cortex when a skill is acquired, such as when learning to play a musical instrument. We found enlarged cortical representation of tones of the musical scale as compared to pure tones in skilled musicians. Enlargement was correlated with the age at which musicians began to practice. We also investigated cortical representations for notes of different timbre (violin and trumpet) and found that they are enhanced in violinists and trumpeters, preferentially for the timbre of the instrument on which the musician was trained. In recent studies we extended these findings in three ways. First, we show that we can use MEG to measure the effects of relatively short-term laboratory training involving learning to perceive virtual instead of spectral pitch and that the switch to perceiving virtual pitch is manifested in the gamma band frequency. Second, we show that there is cross-modal plasticity in that when the lips of trumpet players are stimulated (trumpet players assess their auditory performance by monitoring the position and pressure of their lips touching the mouthpiece of their instrument) at the same time as a trumpet tone, activation in the somatosensory cortex is increased more than it is during the sum of the separate lip and trumpet tone stimulation. Third, we show that musicians' automatic encoding and discrimination of pitch contour and interval information in melodies are specifically enhanced compared to those in nonmusicians in that musicians show larger functional mismatch negativity (MMNm) responses to occasional changes in melodic contour or interval, but that the two groups show similar MMNm responses to changes in the frequency of a pure tone.

DOI: 10.1196/annals.1284.054
PubMed: 14681168


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Music and learning-induced cortical plasticity.</title>
<author>
<name sortKey="Pantev, Christo" sort="Pantev, Christo" uniqKey="Pantev C" first="Christo" last="Pantev">Christo Pantev</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada. pantev@rotman-baycrest.on.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>The Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ross, Bernhard" sort="Ross, Bernhard" uniqKey="Ross B" first="Bernhard" last="Ross">Bernhard Ross</name>
</author>
<author>
<name sortKey="Fujioka, Takkao" sort="Fujioka, Takkao" uniqKey="Fujioka T" first="Takkao" last="Fujioka">Takkao Fujioka</name>
</author>
<author>
<name sortKey="Trainor, Laurel J" sort="Trainor, Laurel J" uniqKey="Trainor L" first="Laurel J" last="Trainor">Laurel J. Trainor</name>
</author>
<author>
<name sortKey="Schulte, Michael" sort="Schulte, Michael" uniqKey="Schulte M" first="Michael" last="Schulte">Michael Schulte</name>
</author>
<author>
<name sortKey="Schulz, Matthias" sort="Schulz, Matthias" uniqKey="Schulz M" first="Matthias" last="Schulz">Matthias Schulz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:14681168</idno>
<idno type="pmid">14681168</idno>
<idno type="doi">10.1196/annals.1284.054</idno>
<idno type="wicri:Area/Main/Corpus">001B09</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B09</idno>
<idno type="wicri:Area/Main/Curation">001B09</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B09</idno>
<idno type="wicri:Area/Main/Exploration">001B09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Music and learning-induced cortical plasticity.</title>
<author>
<name sortKey="Pantev, Christo" sort="Pantev, Christo" uniqKey="Pantev C" first="Christo" last="Pantev">Christo Pantev</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada. pantev@rotman-baycrest.on.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>The Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ross, Bernhard" sort="Ross, Bernhard" uniqKey="Ross B" first="Bernhard" last="Ross">Bernhard Ross</name>
</author>
<author>
<name sortKey="Fujioka, Takkao" sort="Fujioka, Takkao" uniqKey="Fujioka T" first="Takkao" last="Fujioka">Takkao Fujioka</name>
</author>
<author>
<name sortKey="Trainor, Laurel J" sort="Trainor, Laurel J" uniqKey="Trainor L" first="Laurel J" last="Trainor">Laurel J. Trainor</name>
</author>
<author>
<name sortKey="Schulte, Michael" sort="Schulte, Michael" uniqKey="Schulte M" first="Michael" last="Schulte">Michael Schulte</name>
</author>
<author>
<name sortKey="Schulz, Matthias" sort="Schulz, Matthias" uniqKey="Schulz M" first="Matthias" last="Schulz">Matthias Schulz</name>
</author>
</analytic>
<series>
<title level="j">Annals of the New York Academy of Sciences</title>
<idno type="ISSN">0077-8923</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Auditory Cortex (physiology)</term>
<term>Humans (MeSH)</term>
<term>Learning (physiology)</term>
<term>Magnetoencephalography (MeSH)</term>
<term>Music (MeSH)</term>
<term>Neuronal Plasticity (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Apprentissage (physiologie)</term>
<term>Cortex auditif (physiologie)</term>
<term>Humains (MeSH)</term>
<term>Magnétoencéphalographie (MeSH)</term>
<term>Musique (MeSH)</term>
<term>Plasticité neuronale (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Apprentissage</term>
<term>Cortex auditif</term>
<term>Plasticité neuronale</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Auditory Cortex</term>
<term>Learning</term>
<term>Neuronal Plasticity</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Magnetoencephalography</term>
<term>Music</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Magnétoencéphalographie</term>
<term>Musique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Auditory stimuli are encoded by frequency-tuned neurons in the auditory cortex. There are a number of tonotopic maps, indicating that there are multiple representations, as in a mosaic. However, the cortical organization is not fixed due to the brain's capacity to adapt to current requirements of the environment. Several experiments on cerebral cortical organization in musicians demonstrate an astonishing plasticity. We used the MEG technique in a number of studies to investigate the changes that occur in the human auditory cortex when a skill is acquired, such as when learning to play a musical instrument. We found enlarged cortical representation of tones of the musical scale as compared to pure tones in skilled musicians. Enlargement was correlated with the age at which musicians began to practice. We also investigated cortical representations for notes of different timbre (violin and trumpet) and found that they are enhanced in violinists and trumpeters, preferentially for the timbre of the instrument on which the musician was trained. In recent studies we extended these findings in three ways. First, we show that we can use MEG to measure the effects of relatively short-term laboratory training involving learning to perceive virtual instead of spectral pitch and that the switch to perceiving virtual pitch is manifested in the gamma band frequency. Second, we show that there is cross-modal plasticity in that when the lips of trumpet players are stimulated (trumpet players assess their auditory performance by monitoring the position and pressure of their lips touching the mouthpiece of their instrument) at the same time as a trumpet tone, activation in the somatosensory cortex is increased more than it is during the sum of the separate lip and trumpet tone stimulation. Third, we show that musicians' automatic encoding and discrimination of pitch contour and interval information in melodies are specifically enhanced compared to those in nonmusicians in that musicians show larger functional mismatch negativity (MMNm) responses to occasional changes in melodic contour or interval, but that the two groups show similar MMNm responses to changes in the frequency of a pure tone.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">14681168</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>02</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0077-8923</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>999</Volume>
<PubDate>
<Year>2003</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Annals of the New York Academy of Sciences</Title>
<ISOAbbreviation>Ann N Y Acad Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Music and learning-induced cortical plasticity.</ArticleTitle>
<Pagination>
<MedlinePgn>438-50</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Auditory stimuli are encoded by frequency-tuned neurons in the auditory cortex. There are a number of tonotopic maps, indicating that there are multiple representations, as in a mosaic. However, the cortical organization is not fixed due to the brain's capacity to adapt to current requirements of the environment. Several experiments on cerebral cortical organization in musicians demonstrate an astonishing plasticity. We used the MEG technique in a number of studies to investigate the changes that occur in the human auditory cortex when a skill is acquired, such as when learning to play a musical instrument. We found enlarged cortical representation of tones of the musical scale as compared to pure tones in skilled musicians. Enlargement was correlated with the age at which musicians began to practice. We also investigated cortical representations for notes of different timbre (violin and trumpet) and found that they are enhanced in violinists and trumpeters, preferentially for the timbre of the instrument on which the musician was trained. In recent studies we extended these findings in three ways. First, we show that we can use MEG to measure the effects of relatively short-term laboratory training involving learning to perceive virtual instead of spectral pitch and that the switch to perceiving virtual pitch is manifested in the gamma band frequency. Second, we show that there is cross-modal plasticity in that when the lips of trumpet players are stimulated (trumpet players assess their auditory performance by monitoring the position and pressure of their lips touching the mouthpiece of their instrument) at the same time as a trumpet tone, activation in the somatosensory cortex is increased more than it is during the sum of the separate lip and trumpet tone stimulation. Third, we show that musicians' automatic encoding and discrimination of pitch contour and interval information in melodies are specifically enhanced compared to those in nonmusicians in that musicians show larger functional mismatch negativity (MMNm) responses to occasional changes in melodic contour or interval, but that the two groups show similar MMNm responses to changes in the frequency of a pure tone.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pantev</LastName>
<ForeName>Christo</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>The Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada. pantev@rotman-baycrest.on.ca</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ross</LastName>
<ForeName>Bernhard</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fujioka</LastName>
<ForeName>Takkao</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Trainor</LastName>
<ForeName>Laurel J</ForeName>
<Initials>LJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schulte</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schulz</LastName>
<ForeName>Matthias</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ann N Y Acad Sci</MedlineTA>
<NlmUniqueID>7506858</NlmUniqueID>
<ISSNLinking>0077-8923</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001303" MajorTopicYN="N">Auditory Cortex</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007858" MajorTopicYN="N">Learning</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015225" MajorTopicYN="N">Magnetoencephalography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009146" MajorTopicYN="Y">Music</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009473" MajorTopicYN="N">Neuronal Plasticity</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>25</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>2</Month>
<Day>10</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>12</Month>
<Day>19</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14681168</ArticleId>
<ArticleId IdType="doi">10.1196/annals.1284.054</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Fujioka, Takkao" sort="Fujioka, Takkao" uniqKey="Fujioka T" first="Takkao" last="Fujioka">Takkao Fujioka</name>
<name sortKey="Ross, Bernhard" sort="Ross, Bernhard" uniqKey="Ross B" first="Bernhard" last="Ross">Bernhard Ross</name>
<name sortKey="Schulte, Michael" sort="Schulte, Michael" uniqKey="Schulte M" first="Michael" last="Schulte">Michael Schulte</name>
<name sortKey="Schulz, Matthias" sort="Schulz, Matthias" uniqKey="Schulz M" first="Matthias" last="Schulz">Matthias Schulz</name>
<name sortKey="Trainor, Laurel J" sort="Trainor, Laurel J" uniqKey="Trainor L" first="Laurel J" last="Trainor">Laurel J. Trainor</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Pantev, Christo" sort="Pantev, Christo" uniqKey="Pantev C" first="Christo" last="Pantev">Christo Pantev</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B22 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001B22 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:14681168
   |texte=   Music and learning-induced cortical plasticity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:14681168" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021